4,684 research outputs found

    Key factors and network model for location-based cultural mobile game design

    Get PDF
    The use of smart devices as media for digital learning constitutes a new-generation digital learning paradigm. Therefore, context-aware game-based learning has attracted considerable attention. Location-based games have not only positive effects on learning but also pronounced effects on culture and history. Accordingly, focusing on railway cultural heritages, we attempted to assess interdependent relationships between key factors crucial for the design of a location-based mobile game for cultural heritages. We adopted the analytic network process (ANP) for our assessment. We initially performed a literature review to generalize relevant criteria and elements and developed a questionnaire based on the fuzzy delphi method (FDM); which lead to the selection of key factors, namely 3 criteria and 15 elements. We also applied an online ANP-based questionnaire; on the basis of the experts' opinions, we established a network model and determined the priority order of the key factors. The results revealed that experts considered “culture learning” to be of the highest importance, with the most important three elements being “prior knowledge,” “challenge levels,” and “cultural narrative.” Moreover, culture learning exhibited a strong interaction with content design. In addition, each element had a considerable influence on the remaining elements that could provide references for the construction of location-based cultural mobile games in the future

    Spin-flip effects on the current-in-plane magnetotransport in magnetic multilayers with arbitrary magnetization alignments

    Get PDF
    An extended Boltzmann equation approach, with nondiagonal components of the electron distribution, function taken into account, is proposed to study spin-flip effects on the magnetoresistance (MR) in magnetic inhomogeneous systems with arbitrary magnetization alignments. The presence of spin-flip scattering is found to reduce the MR and to decrease deviation of the MR from linear dependence on sin 2(θ/2) where θ is the angle between the magnetizations of successive magnetic films.published_or_final_versio

    Theory of electric-field-induced metal-insulator transition in doped manganites

    Get PDF
    The insulator to metal transition (IMT) induced by the application of an electric field in doped manganites is investigated theoretically. Starting from the double-exchange mechanism with the long-range Coulomb interaction included, we find that the electric field may suppress the charge ordering and drive the system from the antiferromagnetic and charge-ordered state with an energy gap at the Fermi level to the ferromagnetic and gapless state, resulting in the IMT. A numerical simulation is performed for manganite films with intrinsic inhomogeneities, and an important impact of the inhomogeneities on this electric-field-induced transition is obtained. Our results can naturally account for the recently observed electric-filed-induced IMT phenomenon in manganites.published_or_final_versio

    Orbital ordering and two ferromagnetic phases in low-doped La 1-xSr xMnO 3

    Get PDF
    We present a theory for the transition between two ferromagnetic phases observed experimentally in lightly doped La 1-xSr xMnO 3. Starting from an electronic model, the instabilities to various types of orbital orderings are studied within the random-phase approximation. In most cases, the instabilities occur in the region of strong correlations. A phase diagram is calculated in the case of strong correlation by means of the projected perturbation technique and the Schwinger boson technique. A phase transition between two types of orbital ordering occurs at a low doping, which may be closely relevant to recent experimental observations.published_or_final_versio

    Phase diagram of an extended Kondo lattice model for manganites: The Schwinger-boson mean-field approach

    Get PDF
    We investigate the phase diagram of an extended Kondo lattice model for doped manganese oxides in the presence of strong but finite Hund's coupling and on-site Coulomb interaction. By means of the Schwinger-boson mean-field approach, it is found that, besides magnetic ordering, there will be nonuniform charge distributions, such as charge ordering and phase separation, if the interaction between electrons prevails over the hybridization. Which of the charge ordering and phase separation appears is determined by a competition between effective repulsive and attractive interactions due to virtual processes of electron hopping. Calculated results show that strong electron correlations caused by the on-site Coulomb interaction as well as the finite Hund's coupling play an important role in the magnetic ordering and charge distribution at low temperatures. ©2000 The American Physical Society.published_or_final_versio

    The Transformation Of Trust In China’s Alternative Food Networks: Disruption, Reconstruction, And Development

    Get PDF
    Food safety issues in China have received much scholarly attention, yet few studies systematically examined this matter through the lens of trust. More importantly, little is known about the transformation of different types of trust in the dynamic process of food production, provision, and consumption. We consider trust as an evolving interdependent relationship between different actors. We used the Beijing County Fair, a prominent ecological farmers’ market in China, as an example to examine the transformation of trust in China’s alternative food networks. We argue that although there has been a disruption of institutional trust among the general public since 2008 when the melamine-tainted milk scandal broke out, reconstruction of individual trust and development of organizational trust have been observed, along with the emergence and increasing popularity of alternative food networks. Based on more than six months of fieldwork on the emerging ecological agriculture sector in 13 provinces across China as well as monitoring of online discussions and posts, we analyze how various social factors—including but not limited to direct and indirect reciprocity, information, endogenous institutions, and altruism—have simultaneously contributed to the transformation of trust in China’s alternative food networks. The findings not only complement current social theories of trust, but also highlight an important yet understudied phenomenon whereby informal social mechanisms have been partially substituting for formal institutions and gradually have been building trust against the backdrop of the food safety crisis in China.published_or_final_versio

    Spin and orbital excitations in undoped manganites

    Get PDF
    We develop a theory for spin and orbital excitations in undoped manganites to account for the spin and orbital orderings observed experimentally. It is found that the anisotropy of the magnetic structure is closely related to the orbital ordering, and the Jahn-Teller effect stabilizes the orbital ordering. The phase diagram and the low-energy excitation spectra for both spin and orbital orderings are obtained. The calculated critical temperatures can be quantitatively comparable to the experimental data. © 2000 American Institute of Physics.published_or_final_versio

    Numerical simulation of transient force and eddy current loss in a 720-MVA power transformer

    Get PDF
    Author name used in this publication: S. L. HoAuthor name used in this publication: H. C. WongVersion of RecordPublishe

    Giant magnetoresistance in magnetic granular systems

    Get PDF
    Based on a semiclassical model, the transport properties in systems of cylindrical or spherical magnetic granules are investigated analytically. It is shown that the conductivities as well as the magnetoresistance of these systems depend strongly on the size of the granules. In particular, there is always an optimum granular size for the magnetoresistance. ©1996 American Institute of Physics.published_or_final_versio

    Macroscopic theory of giant magnetoresistance in magnetic granular metals

    Get PDF
    A macroscopic theory of giant magnetoresistance in granular magnetic materials is developed to improve on that of Rubinstein [Phys. Rev. B 50, 3830 (1994)]. By using a self-consistent method and introducing a useful parametrization, we show the magnetotransport in granular systems to be between those for currents in the plane of layers and currents perpendicular to the plane of the layers in multilayers. The theoretical result in the local limit is found to be in agreement with the observed singular dependence of the giant magnetoresistance on annealing temperature.published_or_final_versio
    corecore